If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10-t^2+t*2=0
We add all the numbers together, and all the variables
-1t^2+t*2+10=0
Wy multiply elements
-1t^2+2t+10=0
a = -1; b = 2; c = +10;
Δ = b2-4ac
Δ = 22-4·(-1)·10
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{11}}{2*-1}=\frac{-2-2\sqrt{11}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{11}}{2*-1}=\frac{-2+2\sqrt{11}}{-2} $
| 0=32t^2+40t-48 | | 32t^2+40t-48=0 | | R(n)=0.25n0.75+0.25n. | | 20.7+n=9 | | X+30=x-10=x+10=2x | | -4x+2=-3x-4 | | 2a+9=9+5 | | u^2+6u+3=0 | | 3*4^(3x-6)+2=35 | | 3(4)^(3x-6)+2=35 | | 2x-2+2x+8=90 | | 7/3+x=3 | | Y-20=180°-y | | 39x-3=15 | | -2x-x=-7-2 | | 6(9-x)-3(8x-3=6x-9 | | 2^x=4+2x | | 2^x=+2x | | v+6/v+3=(v-5/v-3)+1 | | 6x-14=4x+1 | | -3(4x-2)=-6(2x- | | v+6/v+3=v-5/v-3+1 | | -(3x-7)=3(7-2x)-13 | | 9x^2=30x-25= | | 5^(-2x/3)=0.63 | | 0=21x+49 | | 2/3x+1/3=13x+2/3 | | ((-3/10)x^2)-x-40=0 | | -6(2x-1)=12x+ | | -1-r=3 | | -8+k/2=-11 | | 4(x-3)+2=3/2(x+2)+10 |